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Interaction between a dislocation and an impurity

in KCl: Mg2+ single crystals

Y. KOHZUKI, T. OHGAKU
Faculty of Engineering, Kanazawa University, Kodatsuno 2-40-20, Kanazawa 920-8667, Japan

The interaction between a dislocation and the impurity in KCl: Mg2+ (0.035 mol% in the
melt) was investigated at 77–178 K with respect to the two models: one is the Fleischer’s
model and the other the Fleischer’s model taking account of the Friedel relation. The latter
is termed the F-F. The dependence of strain-rate sensitivity due to the impurities on
temperature for the specimen was appropriate to the Fleischer’s model than the F-F.
Furthermore, the activation enthalpy, �H, for the Fleischer’s model appeared to be nearly
proportional to the temperature in comparison with the F-F. The Friedel relation between
effective stress and average length of the dislocation segments is exact for most weak
obstacles to dislocation motion. However, above-mentioned results mean that the Friedel
relation is not suitable for the interaction between a dislocation and the impurity in the
specimen. Then, the value of �H(Tc) at the Fleischer’s model was found to be 0.61 eV.
�H(Tc) corresponds to the activation enthalpy for overcoming of the strain field around the
impurity by a dislocation at 0 K. In addition, the Gibbs free energy, �G0, concerning the
dislocation motion was determined to be between 0.42 and 0.48 eV on the basis of
the following equation

∂ ln ε̇/∂τ = {�G0/(kT τp0)}{1 − (T/Tc)1/2}−1(T/Tc)1/2 + ∂ ln ε̇0/∂τ

where k is the Boltzmann’s constant, T the temperature, Tc the critical temperature at which
the effective stress due to the impurities is zero, τp0 the effective shear stress without
thermal activation, and ε̇0 the frequency factor. C© 2003 Kluwer Academic Publishers

1. Introduction
On the basis of the relative curves of strain–rate sensi-
tivity and stress decrement due to oscillation, we have
investigated the interaction between a dislocation and
an impurity for KCl doped with divalent impurities [1–
3]. The curve seemed to reflect the influence of ul-
trasonic oscillation on the dislocation motion on the
slip plane containing many impurities and a few for-
est dislocations [1, 4]. When alkali halide crystals are
doped with divalent impurities, the impurities are ex-
pected to be paired with positive ion vacancies. The
pairs are termed I–V dipoles. Then, tetragonal lattice
distortions are considered to be produced around the
I–V dipoles [5]. The asymmetrical distortions which
cause solution hardening interact strongly with mobile
dislocations. Fleischer and Hibbard [6] and Johnston
et al. [7] named the solution hardening “rapid hard-
ening.” Furthermore, Fleischer has discussed the solu-
tion hardening of LiF: Mg2+ (80 p.p.m.), whereas the
Friedel relation [8] was not taken into his model [5].
It is well known that the Friedel relation between the
effective stress and the average length of dislocation
segments is exact for most weak obstacles to disloca-

tion motion at low solute concentration. We investigate
whether the Friedel relation is valid for the interaction
between a dislocation and an impurity in KCl:Mg2+,
which is expected to cause the rapid hardening. This is
examined from various methods. In addition, the activa-
tion enthalpy and the Gibbs free energy for overcom-
ing the impurity by a dislocation are obtained in this
paper.

2. Experimental procedure
The single crystals, which are KCl doped with Mg2+
(0.035 mol% in the melt), were deformed by compres-
sion at 77 to 178 K and strain-rate cycling tests were
carried out during superposition of oscillation. The size
of the specimens was about 5 × 5 × 15 mm3. Then, the
stress drop due to superposition of oscillatory stress is
�τ . The stress change due to the strain-rate cycling is
�τ ′ and �τ ′/� ln ε̇ was used as a measure of the strain-
rate sensitivity. In this paper, the strain-rate sensitivity is
abbreviated to SRS. The details of the compression test
and the preparation for the specimens were described
in the previous papers [1, 3].
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3. Discussion for the applicability
of the Friedel relation to the interaction
between a dislocation and the impurity

3.1. Dependence of the SRS due
to the impurities on the temperature

The force-distance relation, which represents the in-
teraction between a dislocation and an impurity, is in-
vestigated with respect to the two models. One is the
Fleischer’s model [5] and the other the Fleischer’s
model taking account of the Friedel relation. The latter
is hereafter termed the F-F. The SRS due to the impu-
rities for the Fleischer’s model is obtained as

∂τ/∂ ln ε̇ = (τp0/Tc)
{
(Tc/T )1/2 − 1

}
T/α (1)

where Tc is the critical temperature T , at which τp1 is
zero, τp0 is the effective shear stress due to the impurities
without thermal activation and α is a constant. τp0 is the
value of τp1 at 0 K. τp1 is considered to represent the
effective stress due to only one type of the impurities
which lie on the dislocation when the dislocation moves
forward with the help of oscillation [1, 4]. That for the
F-F is expressed by

∂τ/∂ ln ε̇

= {3τp0T/(2Tc)}(Tc/T )1/2{1 − (T/Tc)1/2}2
/α (2)

The process of leading Equations 1 and 2 was described
in the paper [9]. The values of τp0 and Tc for Equation
1 can be derived from

(τp1/τp0)1/2 = 1 − (T/Tc)1/2 (3)

and those for Equation 2 from

(τp1/τp0)1/3 = 1 − (T/Tc)1/2 (4)

The relation between τp1 and temperature is considered
to reveal the force-distance relation between a disloca-
tion and an impurity [1, 4]. Therefore, the interaction
between a dislocation and the impurity for KCl:Mg2+
is approximated by the F-F in Fig. 1a and by the
Fleischer’s model in Fig. 1b. The values of Tc and τp0,
which are obtained from Fig. 1a and b, are given in
Table I. The two values for the Fleischer’s model are
small in comparison with those for the F-F. The separa-
tion of various models between a dislocation and an im-
purity has been carried out through the variation of the
thermal component of the yield stress with temperature
[11]. However, the difference in the linear relationship
of effective stress and temperature for the two models
cannot be observed within the temperature as shown
in Fig. 1a and b. Ono [12] also concluded as follows.
It was impossible to select one of several models on
the basis of an experimentally obtained relationship of
stress and temperature.

Fig. 2 shows the dependence of SRS due to the im-
purities on temperature for the specimen. The relative
curve of SRS due to the impurities and temperature for
the Fleischer’s model and that for the F-F are repre-
sented as a solid and a dashed lines, respectively. The

TABLE I Values of τp0 and Tc for the specimen at the two models

τp0 (MPa) Tc (K)

Fleischer’s model 5.64 191 [3]
F-F 17.91 [10] 199 [10]

Figure 1 Linear plots of the effective shear stress and the temperature
for KCl:Mg2+ (0.035 mol% in the melt) at the two models: (a) the F-F
and (b) the Fleischer’s model.

Figure 2 Relationship between the strain-rate sensitivity due to the
impurities and temperature for KCl:Mg2+ (0.035 mol% in the melt).
(---------) corresponds to the dependence of the strain-rate sensitivity on
temperature for the Fleischer’s model and (– – – –) that for the F-F.
(O): (�τ ′/� ln ε̇)p for the specimen.

two curves are derived from the calculations of Equa-
tions 1 and 2. The SRS due to the impurities for the F-F
is obviously larger than that for the Fleischer’s model
below about 100 K as shown in Fig. 2. The open circles
correspond to (�τ ′/� ln ε̇)p for the specimen, which
are considered to be the SRS due to impurities [1, 3, 4].
The (�τ ′/� ln ε̇)p is represented by the difference be-
tween SRS at the first plateau region and at the sec-
ond one on the relative curve of SRS and stress decre-
ment. The solid line in Fig. 3 shows the relative curve
of SRS and stress decrement for KCl:Mg2+ at 113 K.
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Figure 3 Relationship between the strain-rate sensitivity and the stress
decrement for KCl:Mg2+ (0.035 mol% in the melt) at 113 K and ε = 9%.

The value of �τ ′/� ln ε̇ at which �τ is 0.23 MPa is
obviously larger than that at which �τ is 0 MPa as
can be seen from open triangles in Fig. 3. Therefore,
the SRS at the first plateau region is assumed to be in
the middle of those at which �τ is 0 and 0.23 MPa.
That is, the (�τ ′/� ln ε̇)p in Fig. 3 corresponds to the
SRS due to the impurities for the specimen at 113 K.
Fig. 4 shows the curve for KCl:Mg2+ at 143 K. It is
the curve at the smallest temperature at which τp1 does
not appear. Then, the (�τ ′/� ln ε̇)p is assumed to be
the difference between the SRS at which the curve in-
tersects the ordinate and at plateau region, since τp1
first becomes zero at 143 K within the accuracy. There-
fore, the (�τ ′/� ln ε̇)p at this temperature would be
0.0215 MPa from Fig. 4.

As can be seen from Fig. 2, the open circles are ap-
proximated to the solid line rather than the dashed one
within the present temperatures. That is, the Fleischer’s
model seems to be more suitable than the F-F. This
means that the Friedel relation is not appropriate to
the interaction between a dislocation and the impurity
in the specimen. If the (�τ ′/� ln ε̇)p can be obtained
below about 100 K, it will be more distinctly deter-
mined whether the Friedel relation is appropriate for the
specimen.

Figure 4 Relationship between the strain-rate sensitivity and the stress
decrement for KCl:Mg2+ (0.035 mol% in the melt) at 143 K and
ε = 10%.

3.2. Relation between the effective shear
stress and the activation volume for
the interaction between a dislocation
and the impurities

The measurement of activation volume and its variation
with strain (flow stress) have been investigated in order
to identify the rate-controlling mechanism to disloca-
tion motion [13–19]. The consideration of the activation
volume as dependent on the effective stress is useful in
examining the force-distance relation between a dislo-
cation and an impurity [20]. At a given concentration of
impurity activation volume varies with effective stress
according to the shape of the force-distance curve [21].
The activation volume, v∗, is given by

v∗ = kT (∂ ln ε̇/∂τ )T (5)

where k is the Boltzmann’s constant. The v∗ for the
Fleischer’s model is expressed by substitution of Equa-
tion 1 into Equation 5 as follows

v∗ = αk(Tc/τp0)
{
(Tc/T )1/2 − 1

}−1
(6)

Similarly from Equations 2 and 5, that for the F-F is
expressed by

v∗ = {2αkTc/(3τp0)} (T/Tc)1/2{1 − (T/T c)1/2}−2

(7)

The results of calculations for v∗ at the two models
are shown in Fig. 5 for the specimen. The τp1 for the
Fleischer’s model of ordinate in the figure is obtained
from Equation 3 by the following equation

τp1 = τp0
{
1 − (T/Tc)1/2}2

(8)

and that for the F-F from Equation 4 by

τp1 = τp0
{
1 − (T/Tc)1/2}3

(9)

A solid and a dashed lines represent the relative curve
of v∗ and τp1 for the Fleischer’s model and that for the
F-F, respectively. The open circles in Fig. 5 correspond

Figure 5 Relationship between the effective shear stress and the activa-
tion volume for the interaction between a dislocation and the impurities
in KCl:Mg2+ (0.035 mol% in the melt). (---------) corresponds to the de-
pendence of the activation volume on the effective shear stress for the
Fleischer’s model and (– – – – –) that for the F-F. (O): kT (� ln ε̇/�τ ′)p

for the specimen.
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to the dependence of v∗ calculated from (�τ ′/� ln ε̇)p
on τp1 for the specimen. That is, the v∗ is given by

v∗ = kT (� ln ε̇/�τ ′)p (10)

No difference between the two curves can be almost
observed above the v∗ of about 1 × 10−20 cm3. Below
1 × 10−20 cm3, however, τp1 for the F-F increases more
markedly with decreasing v∗ (temperature) than that
for the Fleischer’s model. As can be seen from Fig. 5, it
is impossible to determine which curve is appropriate
for the open circles within the present temperatures. If
the (�τ ′/� ln ε̇)p can be obtained at still lower tem-
perature, it may be distinguished whether the Friedel
relation is appropriate for the specimen from the fig-
ure. However, the Peierls mechanism can be adapted to
the deformation of alkali halide crystals, such as LiF,
NaCl, NaBr and KCl, at the low temperature [22–24]. It
has been reported for KCl-4 mol% KBr single crystals
that the mobile dislocations are impeded by the Peierls
barriers in addition to the solute ions below about sev-
eral tens K [17]. Therefore, there is difficulty in ob-
taining τp1 and (�τ ′/� ln ε̇)p from the relative curve
of SRS and stress decrement for the specimen at the
low temperature region at which the Peierls barriers
additionally control the dislocation motion. As men-
tioned above, the reason is that the curve seems to re-
flect the dislocation motion on the slip plane containing
two kinds of obstacles: impurities and forest disloca-
tions. On the basis of v∗ calculated from (�τ ′/� ln ε̇)p,
namely, from Equation 10, it is difficult to determine the
applicability of the Friedel relation for the specimen.

3.3. Relation between temperature and the
activation enthalpy for the interaction
between a dislocation and the impurity

When a dislocation overcomes the impurity with the
aid of thermal fluctuation, activation enthalpy, �H , for
the Fleischer’s model is given by [2, 3]

�H = −kT 2(� ln ε̇/�τ ′)p
{
1 − (T/Tc)−1/2}τp0/Tc

(11)

On the other hand, �H for the F-F is calculated from
[9]

�H = −kT 2(� ln ε̇/�τ ′)p {−3τp0/(2Tc)}
× (Tc/T )1/2{1 − (T/Tc)1/2}2

(12)

Assuming that the changes in entropy are neglected,
�H is in proportion to the temperature [25, 26]. That
is, �H is expressed by

�H = αkT (13)

We investigate the proportional relationships of tem-
perature and the activation enthalpy at the two models
for the specimen. The results of Equations 11 and 12
are represented by open circles and triangles in Fig. 6.
The open circles appear to be nearly proportional to
the temperature, compared with the open triangles. The

Figure 6 Relationship between the temperature and the activation en-
thalpy for the interaction between a dislocation and the impurity in
KCl:Mg2+ at the two models: (◦) the Fleischer’s model and (�) the
F-F.

Figure 7 Proportional relationship between the temperature and the acti-
vation enthalpy for the interaction between a dislocation and the impurity
in KCl:Mg2+ at the Fleischer’s model.

�H (T ) for the Fleischer’s model seems to be satisfied
with Equation 13 within the temperature range. Then,
we can find that the Fleischer’s model is suitable for
the specimen rather than the F-F from Fig. 6. There-
fore, the Friedel relation seems not to be appropriate to
the interaction between a dislocation and the impurity
in the specimen.

Fig. 7 shows the proportional relation between tem-
perature and the activation enthalpy at the Fleischer’s
model for the specimen. The value of �H (Tc) taken
from Fig. 7 is 0.61 eV. It corresponds to the activation
enthalpy for overcoming of the strain field around the
I–V dipole by a dislocation at 0 K. The value of �H (Tc)
at the F-F is 0.73 eV.

4. Gibbs free energy for overcoming
of tetragonal lattice distortions by
a dislocation

When the force-distance relation between a dislocation
and an impurity can be approximated by the Fleischer’s
model, the Gibbs free energy for overcoming of the
impurity by the dislocation, �G, was expressed by [5]

�G = �G0
{
1 − (τ/τ0)1/2}2

, (�G0 = τ0 Lb2) (14)

where τ0 is the effective shear stress τ at the temperature
of 0 K, L is the average length of dislocation segments
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and b is the magnitude of the Burgers vector. From an
Arrhenius equation for the thermally activated defor-
mation rate, ε̇, the Gibbs free energy of activation is
also expressed as

�G = αkT, (α = ln (ε̇0/ε̇)) (15)

where ε̇0 is a frequency factor. Differentiating the com-
bining Equations 14 and 15 with respect to the shear
stress gives

∂ ln ε̇/∂τ = {�G0/(kT τ0)}(τ0/τ )1/2{1 − (τ/τ0)1/2}

+ ∂ ln ε̇0/∂τ (16)

Substituting Equation 3 in Equation 16 gives

∂ ln ε̇/∂τ = {�G0/(kT τp0)}{1 − (T/Tc)1/2}−1

× (T/Tc)1/2 + ∂ ln ε̇0/∂τ (17)

where τ0 is replaced by τp0. The result of calcula-
tions of Equation 17 is shown by the open circles in
Fig. 8. The ∂ ln ε̇/∂τ in Equation 17 corresponds to the
(� ln ε̇/�τ ′)p for the specimen in stage II of stress-
strain curve. Only from the data denoted by open cir-
cles, it is difficult to obtain the �G0 for the specimen
on the basis of the slope of a line. We examine the
value of (� ln ε̇/�τ ′)p at which the line intersects the
ordinate in Fig. 8. It corresponds to the ∂ ln ε̇0/∂τ in
Equation 17. The ε̇0 is usually expressed by [27, 28]

ε̇0 = ρb2νD(L0/L)2 (18)

where ρ is the density of mobile dislocations, νD is
the Debye frequency and L0 is the average spacing of
impurities on the slip plane. Differentiating the natural
logarithmic equation of Equation 18 with respect to the
effective shear stress gives

∂ ln ε̇0/∂τ = (∂ ln ρ/∂τ ) − 2(∂ ln L/∂τ ) (19)

The ∂ ln L/∂τ is zero in the Fleischer’s model. There-
fore, the ∂ ln ε̇0/∂τ in Equation 17 for the Fleischer’s

Figure 8 Linear plots of Equation 17 for KCl:Mg2+ (0.035 mol% in the
melt). (◦): (� ln ε̇/�τ ′)p. (•): ∂ ln ε̇0/∂τ .

model can be expressed from Equation 19 by

∂ ln ε̇0/∂τ = � ln ε̇0/�τ ′ = � ln ρ/�τ ′ (20)

The �ρ/�τ ′ is previously obtained for KCl doped with
Ca2+ (0.035 and 0.065 mol% in the melt), Sr2+ (0.035,
0.050 and 0.065 mol% in the melt) or Ba2+ (0.050
and 0.065 mol% in the melt) in stage II [29]. How-
ever, no difference of �ρ/�τ ′ among the three kinds
of specimens can be discriminated because of scattering
(� ln ε̇/�τ ′)p. The results of � ln ρ/�τ ′ are tabulated
in Table II. The value of � ln ρ/�τ ′ ranges from 8.94
to 13.06 MPa−1 and may not be influenced by the size
and the concentration of divalent impurity. Assuming
that the magnitude of the � ln ρ/�τ ′ for KCl:Mg2+
is around those for the KCl doped with Ca2+, Sr2+ or
Ba2+, the ∂ ln ε̇0/∂τ in Equation 17 is represented by
solid circles in Fig. 8. Then, the �G0, which is obtained
from the slope of dashed lines, seems to be between 0.42
and 0.48 eV for the specimen.

When KCl single crystals are doped with Mg2+,
tetragonal lattice distortions are expected to be pro-
duced around the I-V dipoles. The tetragonality, �ε, is
calculated from the following equation [10]:

�ε = 3.81�G0/(b3µ) (21)

where µ is the shear modulus for [110] direction at 0
K and is assumed to be 1.01 × 1010 Pa [30]. The value
of �ε for KCl:Mg2+ would be within the range of 0.29
to 0.33.

The values of �G0 and �ε at the F-F are also given
in Table III. The �G0 is calculated on the basis of the
equation [10]:

∂ ln ε̇/∂τ = {2�G0/(3kT τp0)}{1 − (T/Tc)1/2}−2

× (T/Tc)1/2 + ∂ ln ε̇0/∂τ (22)

The two values may be slightly small in contrast to
those at the Fleischer’s model from Table III.

TABLE I I Values of c and � ln ρ/�τ ′ at 0 K

Specimen (mol% in the melt) c (p.p.m.)a � ln ρ/�τ ′ (MPa−1)

KCl:Ca2+ (0.035) 43.1 13.06
(0.065) 43.5 13.05

KCl:Sr2+ (0.035) 55.2 8.94
(0.050) 98.3 8.97
(0.065) 121.8 8.98

KCl:Ba2+ (0.050) 9.2 12.38
(0.065) 28.3 12.41

aThe concentration of divalent impurities is obtained by dielectric loss
measurement.

TABLE I I I Values of �G0 and �ε for the specimen at the two models

�G0 (eV) �ε

Fleischer’s model 0.42–0.48 0.29–0.33
F-F 0.40–0.46 0.27–0.31
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5. Conclusions
1. The relation between (�τ ′/� ln ε̇)p and temper-

ature for the specimen is approximated to the depen-
dence of SRS due to the impurities on temperature at
the Fleischer’s model rather than the F-F in Fig. 2. Fur-
thermore, the �H calculated from Equation 11 for the
Fleischer’s model seems to be nearly proportional to
the temperature in comparison with the F-F. These re-
sults show that the Fleischer’s model is more suitable
than the F-F. Therefore, it is considered that the Friedel
relation is not appropriate to the interaction between a
dislocation and the impurity in the specimen, though it
is exact for most weak obstacles to dislocation motion.

2. Assuming that the changes in entropy are ne-
glected, the value of �H (Tc) at the Fleischer’s model
is found to be 0.61 eV for the specimen. It is obtained
from the proportional relation of �H (T ) as shown in
Fig. 7.

3. Although the �G0 for the specimen cannot
be obtained only from the result of calculations of
Equation 17, we attempt to estimate the �G0 through
examining the value of the ∂ ln ε̇0/∂τ . The ∂ ln ε̇0/∂τ

for the Fleischer’s model corresponds to � ln ρ/�τ ′.
As a result, the �G0 is considered to be between 0.42
and 0.48 eV from the slope of dashed lines in Fig. 8. In
addition, the �ε for the specimen would be within the
range of 0.29 to 0.33 on the basis of the value of �G0.
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